2nd Quarter June 7, 2016

Financials

- Financial Report
- Approval of Claims
- Budget Revision
- Banking Resolution

• Basin Updates

Basin Updates

• St. Joseph River Basin Filter Strip Initiative

Bank Instability Results in More than Soil Loss

It's Not Just the Environment

Land along waterways can be filled with surprises. Unstable bank tops may be hidden by flowing water that has undercut the bank. Weight and vibration of heavy farm equipment might just be the formula for the remaining bank to collapse with the equipment still on it!

Filter strips provide that cushion of safety. Properly chosen plants, provide deep roots to strengthen the structure of the soil. The width of the filter strip insures that equipment will not get close to instability if undercutting occurs in the banks.

Eroded soils deposit in slow-flow areas down stream from their source. These deposits alter stream flow, resulting in upstream flooding or damage to the stream structure. This necessitates more frequent and more severe maintenance. Controlling soils before they

enter streams and ditches, helps reduce the frequency and severity of drain maintenance—saving taxpayers money.

Who To Contact

For technical assistance and funding opportunities to develop and maintain a filter strip, contact your local **Natural Resource Conservation Sorvice and Soil and Water Conservation District.**

For more information regarding Indiana's Filter Strip Law and tax assessment reductions, contact your County Surveyor and Drainage Board and County Assessor.

Filter Strips Protect Wildlife habitat

ST. JOSEPH RIVER BASIN COMMISSION

227 W. Jefferson Blvd.--#1120 South Bend, IN 46601-1830 P: 574-287-1829 F: 574-239-4072 www.sjrbc.com IMPROVING WATER QUALITY THROUGH GOOD CONSERVATION PRACTICES

IC 6-1.1-6.7 Indiana's Filter Strip Law

- Basin Updates
- St. Joseph River Basin Filter Strip Initiative
- IWLA Scholarship
 - Randy Sexton, Noble County Surveyor
 - 2017 Scholarship

- Basin Updates
- St. Joseph River Basin Filter Strip Initiative
- IWLA Scholarship
- Cobus Creek Watershed Diagnostic Study

Cobus Creek WDS

- Wind-shield survey complete***
 - ~8,720 acres ag bmps needed
 - \bullet ~0.9 miles bank stabilization needed
 - $\bullet\,{\sim}3.2$ miles riparian buffer needed
- Aquatic organisms surveys started
- Chemical testing beginning soon
- Scheduling sites visits to public properties, Elkhart Conservation Club, & Edwardsburg
- Fish Passage Survey in September
- Draft Document early 2017
- Approval March 2017

- Basin Updates
- St. Joseph River Basin Filter Strip Initiative
- IWLA Scholarship
- Cobus Creek Watershed Diagnostic Study
- Water Monitoring Program Update

SJRBC Sampling Sites

Phase 1-2 E. Coli Averages by Subwatershed

Phase 1-2 Nitrate-Nitrite Averages by Subwatershed

11

Phase 1-2 Total Phosphorus Averages by Subwatershed

12

SJRBC

——US EPA Recommendation (<25 mg/L)</p>

14

The number of sampling events exceeding water quality targets tells an even darker story...

	1							
					Total	#	%	
		Nitrate-	Total		Suspend		Samples	
Average	Escherich	Nitrite		Turbidity		Exceedin		
by Site	ia coli	mg/l	us mg/l	ntu	mg/l	g Targets		
1	4	8	7	7	8	8	67%	
2	5	8	5	4	3	9	82%	
3	1	5	2	3	2	5	56%	
4	0	5	1	2	2	5	42%	
5	1	7	5	4	1	8	679	
6	2	6	3	3	2	6	50%	
7	2	9	4	4	2	9	75%	
8	3	8	3	2	2	9	-	
9	0	11	3	2	1	11	92%	
10	1	5	4	0	1	8	67%	
10	2	4	0	0	0	5	42%	
11	2	6	0	2	1	6	50%	
12	2	3	0	2	2	4	33%	
13	0	0	0	1	0	4	8%	
	-	-	-		-		8%	
15	0	0	0	0	0	0		
16	0	0	0	0	0	0	0%	
17	2	0	0	1	0	3	25%	
18	4	0	0	1	0	4	33%	
19	1	0	0	0	0	1	8%	
20	0	0	0	0	0	0	0%	
21	1	2	0	0	0	2	17%	
22	0	3	0	1	0	3	25%	
23	1	4	0	0	0	4	339	
24	0	3	0	0	0	3	25%	
25	0	0	0	1	0	1	8%	
26	0	0	0	1	0	1	8%	
27	0	0	0	0	0	0	0%	
28	1	1	0	0	0	1	8%	
29	0	0	0	0	0	0	0%	
30	0	0	0	0	0	0	0%	

Phase 1-2 Site Prioritization Based on % Exceeding WQ Standards

- Basin Updates
- St. Joseph River Basin Filter Strip Initiative
- IWLA Scholarship
- Cobus Creek Watershed Diagnostic Study
- Water Monitoring Program Update
- Elkhart River Conservation Initiative
 - A collaborative effort to implement sustainable projects in Elkhart River Watershed

Elkhart River Conservation Initiative

• Workshop Held: March 29, 2016

• What projects would you like to see implemented?

New Business

• 2016 – 2017 Budget & Workplan

New Business

- 2016 2017 Budget & Workplan
- IN-MI St. Joseph River Basin Symposium Recap

New Business

- 2016 2017 Budget & Workplan
- IN-MI St. Joseph River Basin Symposium Recap
- 2016-2017 Water Monitoring Sites (Phase 3)

22

2016-2017 Water Monitoring Sites (Phase 3)

2016-2017 Water Monitoring Sites (Phase 3)

		Did it								Total					Total	
		rain	Baseflow					Chlorides		Dissolved		Nitrate-	Total		Susp	
		within 48	/Wet		Temp	Dissolved	BOD	mg/l	Conductivity	Solids		Nitrite	Phosphorus	Turbidity	Solids-	Flow
Site #	Date	hrs. of	Flow	рН	°C	O mg/l	mg/I &%		μS/CM	mg/l	E. coli	mg/l	mg/I	ntu	mg/l	cf/s
31	4/30/2016	Y	WW	8.11	14.6	8.70	1.3/14.94	8.3	477	262	100	0.9	0.07	3	8	9.068
32	4/30/2016	Y	WW	7.93	14.8	8.56	1.3/15.19	8.1	481	265	200	1.2	0.11	3	8	4.082
33	4/30/2016	Y	ww	7.70	14.9	10.28	1.2/11.67	8.7	479	263	250	1.2	0.11	6	14	13.038
34	4/30/2016	Y	ww	7.64	15.6	8.52	1.1/12.91	8.4	489	269	250	1.1	0.15	4	11	5.840
35	4/30/2016	Y	WW	8.10	14.5	9.83	1.2/12.21	8.8	489	269	50	0.8	0.08	3	9	6.048
36	4/30/2016	Y	WW	8.08	14.8	8.98	1.1/12.25	8.9	479	263	150	1.3	0.11	3	9	1.944
37	4/30/2016	Y	ww	8.19	16.2	9.04	1.0/11.06	8.3	483	266	150	0.8	0.07	3	8	2.948
38	4/30/2016	Y	ww	8.01	15.1	9.31	1.2/12.89	8.7	497	273	100	0.9	0.09	4	11	17.617
39	4/30/2016	Y	WW	8.07	14.6	9.76	1.2/12.30	8.9	503	277	100	0.9	0.11	3	8	2.227
40	4/30/2016	Y	WW	8.03	15.8	9.02	1.3/14.41	9.5	521	287	200	0.7	0.07	3	10	53.946
41	4/30/2016	Y	WW	7.99	15.8	9.74	1.3/13.35	9.1	518	285	100	1.1	0.14	3	9	4.731
42	4/30/2016	Y	ww	8.10	15.4	10.15	1.1/10.84	8.9	498	274	500	1.5	0.24	3	9	1.856
43	4/30/2016	Y	WW	8.20	15.2	10.15	1.3/12.81	8.7	513	282	150	1.1	0.17	3	9	1.386
44	4/30/2016	Y	WW	8.16	15.3	9.97	1.2/12.04	9.1	495	272	100	0.9	0.11	2	6	1.879
45	4/30/2016	Y	WW	8.11	15.7	9.07	1.3/14.33	8.9	517	284	200	0.9	0.11	5	13	62.735
46	4/30/2016	Y	ww	8.10	15.1	9.88	1.1/11.13	8.2	523	288	50	1.4	0.13	3	8	7.582
47	4/30/2016	Y	WW	7.99	14.8	10.15	1.1/10.84	8.2	519	285	50	0.8	0.09	2	6	7.946
48	4/30/2016	Y	WW	8.41	16.3	9.82	1.3/13.24	9.2	573	315	100	1.3	0.14	2	6	2.457
49	4/30/2016	Y	WW	8.39	16.1	9.74	1.2/12.32	9.1	568	312	100	1.2	0.12	2	6	2.232
50	4/30/2016	Y	WW	8.39	17.1	10.27	1.2/11.68	8.4	497	273	100	1.1	0.11	3	9	1.932

St. Joseph River Basin Commission, June 2016

CSO Control Phase 2 1 inch = 3,000 feet 0 1,500 3,000 6,000 Feet

CITY OF SOUTH BEND

The Relook at Phase 2

City is examining alternatives to/variations of the current plan, due to:

- •New EPA Policies on e.g. Integrated Planning, Green Stormwater Infrastructure. Meaning less focus on just grey solutions. Holistic solutions = Green Stormwater Infrastructure, Real time sewer flow control, downspout disconnection etc.
- •Flaws in current plan re tank sizing (+/-) and locating. Better understanding of St. Joseph River flow dynamics in SB.

•& Obviously cost.

State of the City Speech

"...when it comes to our federally mandated plan to separate City sewers to comply with the clean water act. With hundreds of millions of dollars of spending required, we will be using <u>every tool</u> available to us technical, legal, and political—to minimize the impact this work will have on ratepayers."

- Mayor Pete Buttigieg, January 2016.

Therefore: New <u>Team</u>, New <u>Vision</u>, New <u>multi-fronted Approach</u>

Driven by: An initiative to improve <u>water quality</u> and alleviate many wastewater concerns by focusing on these <u>Four</u> areas:

- 1. GSI- Getting the Rain Out
- 2. Repairing and Maintaining
- 3. Smarter Sewers
- 4. Building New Infrastructure

1. GSI (or GRO)- Getting the Rain Out (Green Stormwater Infrastructure) https://www.epa.gov/soakuptherain

Reclaim stormwater naturally, reduce sewer overflows, and minimize basement backups. Improve St. Joseph River.

Reduce the volume of stormwater in our combined sewer installing landscaping that helps capture rain (near) where it falls, increase aesthetic appeal, improve property values, and attract biota.

2. Repairing and Maintaining

City to spend >2M\$/<u>year</u> on evaluating, repairing and improving our existing system.

Removing Inflow And Infiltration.

Ensure integrity of current system. Get the most out of what we have before we spend.

Improving what we have.

Continue to aim for improvements while maintaining progress made.

3. Smarter Sewers

Not just with what we have now but with new phases.

We've been water quantity focused, lets get smart about water <u>quality</u> too.

A mechanism to clarify our impact (e.g. E. Coli) on the St. Joseph River. E. Coli source knowledge (human, non-human). CSO auto sampler campaign.

4. Building new Infrastructure

Build to bridge the gap after exhausting 1, 2 & 3.

Always spending wisely. Locally where possible.

Less Gray Infrastructure. Different Gray infrastructure, better located, better sized. Less invasive on the City?

Where are we now: honing alternatives

With existing Consent Decree- full compliance, and finalizing Phase 1.

With our considerations for Phase 2: Multi consultancy team (MWH, American Structurepoint, EmNet, LimnoTech, Morgan & Lewis), finalizing alternatives currently.

•GSI with less tanks

•GSI with a large tunnel

Currently we are detailing these alternatives with regards to locations, sizes, costs, impacts, funding options etc.

•GSI with a short tunnel and consolidation sewer network.

Complex Matrix. Ingredients. Quantities. Methods.

Where next

If best alternative requires renegotiation with

-EPA

-DOJ

-IDEM

It'll be a major issue/task.

In the meantime we must ensure continued compliance with our Consent Decree.

2nd Quarter June 7, 2016

Next Meeting September 6th, 2016

